Configuração de redes neurais artificiais para estimação da altura total de árvores de eucalipto
DOI:
https://doi.org/10.5039/agraria.v11i2a5373Palavras-chave:
inteligência artificial, neuroforest, relações hipsométricasResumo
O objetivo do presente trabalho foi definir configurações adequadas de Redes Neurais Artificiais (RNA) para a obtenção da altura total de árvores de eucalipto. Os dados utilizados foram provenientes de inventários florestais contínuos em povoamentos com idades entre 21 a 137 meses, localizados no sul da Bahia. As configurações de RNA testadas variaram em relação ao número de neurônios na camada oculta, função de ativação, número de ciclos e algoritmos de aprendizagem com seus parâmetros. Os testes foram realizados no sistema Neuroforest e as estimativas foram avaliadas pelo coeficiente de correlação, raiz quadrada do erro quadrático médio (RMSE%) e análise gráfica de resíduos. A estimação da altura de árvores pode ser feita por meio de diversas configurações de RNA, utilizando os algoritmos de aprendizagem Resilient Propagation, Quick Propagation e Scaled Conjugate Gradient, com o número de neurônios ocultos variando entre 03 e 08 para o algoritmo Quick Propagation e 13 e 20 para o algoritmo Scaled Conjugate Gradient. As funções de ativação tangente hiperbólica, sigmóide, log e seno são apropriadas para as camadas ocultas e de saída, e as funções linear e identidade se mostraram apropriadas apenas para a camada de saída. Dois mil ciclos são suficientes para o treinamento das RNA.
Downloads
Downloads
Publicado
Como Citar
Edição
Seção
Licença
Este trabalho é licenciado sob uma licença Creative Commons Attribution-NonCommercial 3.0 Unported License.