
Revista Brasileira de Ciências Agrárias
ISSN (on line) 1981-0997
v.18, n.3, e3211, 2023
Recife, PE, UFRPE. www.agraria.pro.br
DOI: 10.5039/agraria.v18i3a3211 - Protocol 3211
Subm. 04/04/2023 • App. 07/07/2023 • Pub. 26/07/2023

Phenological response patterns and productive ability
of Fallopia convolvulus to weather variability in Iran
Gita Khodapanah1 , Javid Gherekhloo1* , Sima Sohrabi2 ,
Farshid Ghaderi-Far1 , Sajedeh Golmohammadzadeh1

1 Gorgan University of Agricultural Sciences and Natural Resources, Department of Agronomy, Gorgan, Golestan, Iran. E-mail: agma6341@gmail.com; gherekhloo@gau.ac.ir/
gherekhloo@yahoo.com; farshidghaderifar@yahoo.com; sa_gmz@yahoo.com

2 Ferdowsi University of Mashhad, Faculty of Agriculture, Mashhad, Razavi Khorasan, Iran. E-mail: simsoh@gmail.com
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ABSTRACT: An understanding of phenology and reproductive ability of a weed species can provide valuable information to 
manage it incisively. Field studies were conducted in North of Iran, in 2020 and 2021 to evaluate the influence of weather 
variability on phenological response patterns and production ability of black bindweed. In six sowing dates from October to March, 
the required thermal time, development rate and seed production ability for each phenophases across different sowing date (SD) 
were recorded. Among the six sowing dates, the late-autumn SD had the highest emergence and development rate. Sowing 
dates had significant (p < 0.005) effect on the timing of key phenophases, and more importantly on the period each phenological 
growth stage spent. The estimated seed production of this weed upon to SD varied from 1,200 to 15,000 seeds per plant. Based 
on the result black bindweed can be a prevalent weed in a wide range of growing season. Also, late winter and early spring can be 
mentioned as a vital time to manage and deplete seed bank. The results of current study could help construct a basic framework 
for a variety of weed-management tactics for conserving the ecosystems and biodiversity on which we depend.
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Padrões de resposta fenológica e capacidade produtiva de Fallopia convolvulus 
à variabilidade climática no Irã

RESUMO: Uma compreensão da fenologia e capacidade reprodutiva de uma espécie de planta daninha pode fornecer informações 
valiosas para manejá-la de forma incisiva. Estudos de campo foram conduzidos no norte do Irã, em 2020 e 2021, para avaliar 
a influência da variabilidade do clima nos padrões de resposta fenológica e capacidade de produção de cipó-de-veado. Em 
seis épocas de semeadura, de outubro a março, foram registrados o tempo térmico necessário, a taxa de desenvolvimento e 
a capacidade de produção de sementes para cada fenofase em diferentes datas de semeadura (DS). Entre as seis épocas de 
semeadura, a DS de final de outono apresentou a maior taxa de emergência e desenvolvimento. As datas de semeadura tiveram 
efeito significativo (p < 0,005) no tempo das principais fenofases e, o mais importante, no período gasto em cada estágio de 
crescimento fenológico. A produção estimada de sementes dessa planta daninha até DS variou de 1.200 a 15.000 sementes por 
planta. Com base no resultado, a cipó-de-veado pode ser uma erva daninha predominante em uma ampla gama de estações de 
crescimento. Também o final do inverno e o início da primavera podem ser mencionados como um momento vital para gerenciar e 
esgotar o banco de sementes. Os resultados do estudo atual podem ajudar a construir uma estrutura básica para uma variedade 
de táticas de manejo de ervas daninhas para conservar os ecossistemas e a biodiversidade dos quais dependemos. 

Palavras-chave: taxa de desenvolvimento; emergência; táticas de manejo; fenofases; época de semeadura
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Introduction
Changes in local and regional atmospheric patterns are 

expected due to climate variations which could significantly 
affect plant phenology, productive ability, and management 
of weeds (Schwartz, 1999; Menzel, 2003; Danuso et al., 2012). 
Phenology refers to the timing of recurring biological cycles 
and is considered a sensitive indicator of climate change 
(Schwartz, 2003; Polgar & Primack, 2011). Temperature is 
the main variable driving changes in plant phenology (Godoy 
et al., 2009; Korner & Basler, 2010; Lesica & Kittelson, 2010; 
Sohrabi et al., 2011; Singh & Negi, 2019), together with 
photoperiod (Elliott et al., 2006; Dincer et al., 2010) and 
precipitation (Dalmolin et al., 2015). Phenology has emerged 
as an important focus to accurate predict the consequences 
of species and community responses to climate change 
(Otso Ovaskainen et al., 2020; Negi et al. 2022), evaluate the 
variation of air temperature on main agricultural ecosystems 
(Jones et al., 2005; Recasens et al., 2005) and joined broadly 
with new technologies such as remote sensing data from 
satellites (Nieto et al., 2021; Younes et al., 2021), as well 
as the assessment of future trends and impacts (Bock et 
al., 2011; Morellato et al., 2016). Therefore, it is essential 
to know how temperature influences both the reproductive 
cycle and vegetative development of weeds (Danuso et al., 
2012; Loddo et al., 2013; Sohrabi Kertabad et al., 2013; 
Hatfielg & Prueger, 2015; Gherekhloo et al., 2023).

The successfulness’ management of weeds is highly 
dependent on the well-recorded phonological data and 
finding the most sensitive phenophases of weed growth 
like emergence and 2-3 leaf stage which are more sensitive 
to herbicide (Sohrabi et al., 2014b, 2016; MacLaren et al., 
2020). Besides, knowing the number of flushes and the most 
important flushes are another necessary issue to have an 
appropriate weed management. Most of the weeds have 
different flushes, like Cucumis melo var. agrestis (Sohrabi et 
al., 2016), Cyperus difformis, Cyperus tenuspica, Fimbristylis 
miliacea (Lal et al., 2016) and Echinochloa crus-galli var. 
crus-galli (Yoshioka et al., 1998). Having information of 
their flushes would be a key strategy to reach a weed free 
field along growing season especially for crop with low 
competitive ability (Brainard et al., 2009; Travlos et al., 
2020). Besides, could come up with applying broad options 
of weed management (especially environmental-friendly 
methods) instead of only herbicide application because over 
reliance on herbicides can lead to environmental pollution 
and loss of natural vegetation and soil biodiversity (Relyea, 
2005; Rose et al., 2016; MacLaren et al., 2020).

The seed production of annual weeds is especially 
important not only for initial weed infestation but also the 
continued survival (Naylor, 2017). Weed seed production is 
dynamic and is affected by weather, competitive ability, and 
cultivation practices (Yang et al., 2003; Lins Neto et al., 2013; 
Merfield, 2015; Sohrabi et al., 2016). An understanding of 
weed seed production is important as this governs how 
weed should be managed over a period of time to have a 
poor seed bank (Travlos et al., 2020).

Fallopia convolvulus (L.) A. Löve. (Black buckwheat) is an 
annual plant which is formed as a serious weed of 25 crops in 
41 countries. It is native to Eurasia and introduced to Africa, 
America and Oceania, the invasive potential of it was reported 
in North of America and Oceania (http://powo.science.kew.
org and http://www.cabi.org). Black buckwheat has higher 
plasticity, so it occurs in most regions of the world and mostly 
commons on arable lands. Its reproduction is by seed and can 
germinate throughout of growing season (Hume et al., 1983; 
Odero et al., 2010; Mozaffarian et al., 2012). The growth 
of F. convolvulus is an important issue to study because it 
currently has the highest expansion rate and significantly 
affects crop production in Iran and the consequent negative 
impacts on environment by inaccurate herbicide application 
(http://www.plantwise.org). Its twining growth greatly affects 
the growth and yield of wheat and canola (Gherekhloo & 
Sohrabi, 2014; Keshavarzi & Mosaferi, 2020). Therefore, 
it is essential to know how weather variability influences 
both the reproductive cycle and vegetative development of 
it (Vârban et al., 2021). The present study was conducted 
to assess the impact of temperature and precipitation on 
cumulative emergence, development rate, length of sensitive 
phenophases and seed production to regulate populations 
of black buckwheat and limit their negative impacts while 
conserving diversity in North of Iran. 

Materials and Methods
Seeds of the F. convolvulus were collected in June 

2020 from 27 wheat fields located in Golestan province 
in northern Iran. After harvesting, the seeds were pooled, 
cleaned manually, placed in a paper bag, and stored at room 
temperature until sowing. 

The trials were done over 2020-2021 at growing season 
at the Research Farm of Gorgan University of Agricultural 
Sciences and Natural Resources, Iran (36o 85 N, 54o 27 E), 
with an annual rainfall of 556 mm year-1. Plots of 6 m2 (2.0 × 
3.0 m) with silty-loam soil (18% sand, 45% silt, 37% clay, and 
1% organic matter) and soil-water pH of 7.6. The descriptive 
statistics of weather during study are presented in Table 1. 
Figure 1 shows the mean temperature and rainfall during the 
experiment.

The field experiment was applied in a randomized 
complete block design with three replicates. Fifty seeds were 
sown at a depth of 3 cm in five rows spaced 50 cm apart 
between October and July, the intervals between sowings 
were about 30 days. Seeds were sown on the 10 sowing 
dates (SD) but only on six sowing dates the plant had growth. 
So, data of the six SDs including 21 October, 20 November, 
20 December, 19 January,18 February, and 1 March of 2020 
or 2021, was applied to evaluate the influence of varying 
temperatures on growth and development of F. convolvulus. 
The field experiment was managed without pesticides, 
fertilizers, and irrigation. To prevent initial plant mortality, 
plots were kept as weed free as possible during growing 

http://powo.science.kew.org
http://powo.science.kew.org
http://www.cabi.org
http://www.plantwise.org
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season after emergence by hand- weeding. When all plants 
had emerged, plants were thinned to achieve the target 
plant density (six plants per plot).

Measurements
Phenological characteristics of F. convolvulus plants were 

studied during the autumn of 2020 and winter and early 
spring of 2021. The time of emergence was the date when 
50% of the plants had emerged through the soil surface. 
Emerged seedlings were counted twice a week following 
seed burial to calculate cumulative emergence. The field was 
visited twice a week and, on each occasion, leaf appearance 
(2-4 leaf appearance), branching (stem appearance), 
flowering stage (flower appearance), fruit set, seed rain and 
maturation were recorded. The number of fruits per plant 
was recorded at each replication were collected randomly to 
evaluate number of seeds per plant. The rained seeds were 
collected as possible as during the seed rain phase.

Data analysis
The thermal-time (TT) approach was used to predict black 

wild buckwheat development stages. The daily increment of 
thermal time was calculated as (Streck et al., 2003). Based 

on the following standard Equation 1, the degree-day of 
growth is determined for each phenophases (oC-1 day-1).

Table 1. Descriptive statistics for minimum, maximum, average temperatures and rainfall during two years 2020 (1 October) 
and 2021 (1 October). Daily minimum and maximum air temperatures were recorded in a standard weather station (36o 85’ N, 
54o 27’ E, 13.3 asl), ~6 km from the field site.

Figure 1. The mean temperature and rainfall during the 
experiment (started date is 1 October). Daily minimum and 
maximum air temperatures were recorded in a standard 
weather station (36o 85’ N, 54o 27’ E, 13.3 asl), ~6 km from 
the field site.

( ) ( )DTT TP1D TBD f T= − ×

where: f (T) is the temperature function, the first component 
of the daily thermal time (TP1D-TBD) is constant, and non-
optimal temperature will affect daily thermal time through f(T). 
f(T) is temperature function (as a reduction factor) that varies 
between 0 (outside the optimal range of temperatures) and 1 
(optimal temperature) (Soltani et al., 2006; Sohrabi et al., 2016). 

The reaction functions to temperature can be justified by 
the Equation 2.

( ) ( )
( )
( )
( )

TMP TBDRf T  if TBD TMP TP1D
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 if TP2D TMP TCD

TCD TP2D
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where: TBD, TP1D, TP2D, and TCD are the base, lower 
optimum, upper optimum and ceiling temperatures for 
germination of F. convolvulus, respectively (Table S1 and 
Figure S1). The base, lower and upper optimum and 
ceiling temperatures for given weed are 1, 20, 34 and 45 
oC, respectively (Khodapanah et al., 2022). Values of the 
cardinal temperatures and weather data (Table 1) were 
inputted as parameters in the function to calculation of 
required thermal time for each SD. Development rate were 
obtained by nonlinear regression of the required thermal 
time of different phenophases (Equation 3).

( )50

af
x x

1 e
b

=
 −  + −  
   

where: f is phenophases, a is the maximum phenophases, x50 
is the thermal time to reach 50% of phenophases and b is the 
slope of the curve or development rate.

LSD test (at 0.05) was done for determining the significant 
difference of seed production across different SD. Data was 

(1)

(2)

(3)
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analyzed with SAS 9.1 (SAS Institute, 2009). The weather 
data were imported as parameter to calculate the required 
thermal time (Figure 1).

Results
Emergence

Higher cumulative and rate emergence were observed at 
fourth and third date of sowing, respectively. The greatest 
cumulative and rate of emergence (~50% and 5 plant day-1) 
were concurrent with 30 to 45 of Julian days (Figure 2). Last 
date of sowing date had the lowest rate and percentage 
of emergence. The majority of seedlings emergence were 
recorded in February (at second date of sowing) that 
continued till end of March with the peak number in the 
fourth date of sowing. During the growing season of F. 
convolvulus, two distinct emergence flushes were detected 
at ~30 and 40 Julian days. The longest duration of emergence 
(about 70 days) was belonged to the 20 October while the 
shortes (19 days) was observed for the 19 January. The first 
order of sowing date needed more days to reach 50% of 
emergence, while it was contrast for fourth date of sowing.

According to germination test of seeds of F. convolvulus, 
the successful germination has high dependency to 20 and 

25 oC (Table S1 and Figure S1) which is accordance to mean 
temperature in early spring (Figure 1).

Phenophases 
Eight phenophases were detected during growing season 

of F. convolvulus (Table 2 and Figure 3). The required thermal 

Figure 2. Bars and line show the cumulative emergence (%) 
and emergence rate (number per day) during the growing 
season, respectively. The vertical line above the x-axis shows 
the multiple distinct emergence flushes of F. convolvulus 
during six SD.

Table 2. The required thermal time for different phenophases of F. convolvulus across different SD according to function 1. 
The numbers in parentheses are represented the required days for each phenophases.

Figure 3. Different phenophases of F. convolvulus, 1 to 7: 
emergence, 2-3 leaves, stem forming, branching, flowering, 
fruit forming, and seed rain, respectively.
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time for each phonological stage at six SD according to f (t), 
were various and the total TT ranged from 1,799 to 2,472 
oC day-1. The required time for each phenophases was 
dropped in the third and fourth sowing date. The required 
days were ranged from 24 to 62 days (for emergence), 50 
to 96 days (for 2-3 leaf appearance), and 60 to 111 days (for 
stem appearance) upon sowing date (Table 2). Emergence 
phenophase could occur more than 200 days in whole of 
growing season however after 200 Julian days emergence 
did not happen (from August onwards).

The shorter phenophases were observed for third and 
last date of sowing orders. Last phenophases of 5th and 6th 
date of sowing almost occurred simultaneously and mostly 
confined to months of June and July. Flowering and fruit 
formation stages were recorded almost after 100 days of 
SD except at the first SD which it happens after 140 days of 
sowing (Figure 4). In the end of growing season especially in 
the latter SDs the length of phenophases was very short than 
former SDs. 

Figure 4. The length of each phenological stage (emergence 
to maturity) across different date of sowing (different colors 
show different phenophases from emergence to maturity).

Development rate
Sowing date affected a period of time that plants spent in 

each phenological stage. The highest development rate was 
belonged to fourth and third of SD, respectively. X50 is showing 
the thermal time for reaching 50 percent of phenophases 
which was lower for fourth date of sowing (912 oC day-1). 
X50 were higher at fifth, sixth and first date of sowing (Table 
3 and Figure 5). This result has shown coordinate with the 

Figure 5. Development rate of F. convolvulus at six different 
date of sowing across seven phenophases.

Table 3. The nonlinear Regression of the required thermal 
time for each different phenophases of F. convolvulus 
according to function 2.

a: maximum phenophases, x50: the thermal time to reach 50% of phenophases and 
b: development rate.

Values within a column followed by the same letter are not significantly different at p = 0.05 of LSD test.

Table 4. The seed production and some morphological characteristics of F. convolvulus at different date of sowing.

germination response of seeds to temperature (Table S1 and 
Figure S1). 

Productive ability
Seed production of F. convolvulus was highly reliance on 

the length of growing season of plant. Significant differences 
were observed in seed weight and seed production across 
different SD from October to March. Total seed number per 
plant varied from 1,200 to 15,000 seeds per plant in different 
SD. The highest seed production was detected at the first, 
second and third order of SD (Table 4). These dates had greater 
biomass (number of branches and length of plant) which 
produced ~40% more seeds than other dates of sowing. The 
maximum seed number (≈15,000 per plant) and the greatest 
seed weight (0.62 g per 100 seeds) were obtained from plants 
which have been sown in late October (Table 4). 
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Discussion 
The result demonstrated that F. convolvulus has a 

prolonged emergence pattern from early winter through to 
spring. The maximum emergences were observed after 30 
Julian days, this suggests that the start time for F. convolvulus 
management should be near spring and after about 60 Julian 
days and should be applied in about two periodical times.

F. convolvulus, like other annual weeds, is a problem 
throughout the growing season because it emerges at wide 
range of time, allowing it to escape from control operations, 
produce seed and create soil seed banks that may persist 
for several years (Kon et al., 2007; Baskin & Baskin, 2014). 
In addition to the winter crops (wheat and canola), long 
duration of black bindweed̛ s emergence makes it’s as a 
possible weed in summer crops like sugar beet, maize, 
sesame and sunflower (Hume et al., 1983; Royer & Dickinson, 
1999; Odero et al., 2010; Vidotto et al., 2016; Keshavarzi & 
Mosaferi, 2020). In addition to it, its prolonged emergence 
is an advantage with regard to climate change, according 
to Chen et al. (2020) species with lengthened phenological 
periods will be more dominate under warming. 

The main reason for lack of emergence on the last four SD 
of ten SD probably related to induced secondary dormancy 
of seeds due to unsuitable temperature. The inductions 
of secondary dormancy due to warm temperature were 
reported for various species by Murphey et al. (2015), Née 
et al. (2015), and Pawłowski et al. (2020). 

This research highlights the main phonological response 
of P. convolvulus in end of winter and early spring. With the 
advancing of sowing date (from 1 to 4), the average length 
of the emergence phase was decreased. This pattern is 
observed for Bidens frondosa and B. tripartite (Danuso et al., 
2012), Abutilon theophrasti and Datura stramonium (Loddo 
et al., 2013).

The appearance of flowers and seed forming were 
happened after 80 to nearly 150 days of sowing (Table 
1). This duration is also critical for preventing seed banks 
formation due to long seed longevity (> 5 yr in the soil) of F. 
convolvulus (Baskin & Baskin, 2014).

Based on these results, F. convolvulus can grow in a 
period of more than 200 days (from 30 to 240 days) and the 
production of leaves and branches occurs in 90 to 250 days. 
Therefore, management tactics should be considered in a 
long period of time, especially in late winter and early spring. 
The recommendation time for management of Lepyrodiclis 
holosteoides as an important weed in winter wheat was 
proposed before the early tillering stage of winter wheat 
(Minbashi Moeini et al., 2021). Odero et al. (2010) reported 
the importance of the appropriate timing of control to attain 
efficient use of herbicides and other weed management 
tools. The length of each phenophases (emergence to 
maturity) was different due to thermal time requirements 
and development rate. For as much as the first and second 
phenophases of plant mostly were occupied large portion of 
plant growth, a long-term management should be considered 

to reach sustainable management. However, the lack of 
abiotic stress combined with an abundance of resources in 
early stages of growing season may leaded more competitor 
seedlings and seed setting, so applying management tactics 
will be crucial during in late winter and early spring. Stronger 
competitors have greater selection pressure to adapt to 
control (Comont et al., 2019). The importance of knowing 
phenology of weeds to allow targeting maintenance and 
remove them before seeds setting is illustrated by studies by 
Nagase et al. (2013) and Piskackova et al. (2020).

The rate of plant development was various based on the 
required thermal time for each different phenophases of F. 
convolvulus. Because of favorable temperature during the 
third and fourth sowing date, the required TT was lower than 
unfavorable temperatures during first and last date of sowing. 
The shorter phenophases might be related to highest rate of 
development or inaccurate time of plant growth because of 
unsuitable condition like temperature or day-length (Sohrabi 
et al., 2014a). Danuso et al. (2012) mentioned the greater 
emergence and ability to shorten the phase duration as 
depended on phase to sowing date. The flowering-maturity 
phase was very short, which it might be related to stress 
condition (water and unsuitable temperature) in the end 
of growing season. This pattern is observed in B. frondosa 
and B. tripartite (Danuso et al., 2012), and Chloris virgata 
(Asaduzzaman et al., 2022). 

Reproductive plasticity in relation with various 
phenophases length reported by Bekker et al. (2003), Sohrabi 
et al. (2016), Mahajan et al. (2018), and Asaduzzaman et al. 
(2022), support the observed high weeds capacity to infest 
many crops and landscapes. Forsberg & Best (1964) reported 
ability of black buckwheat to produce up to 30,000 seeds 
per plant. The higher seed production along with seed 
longevity allowed it to be spread over subsequent years in 
many habitats, especially in agricultural habitats which are 
characterized by a high variability of disturbances. Lower 
seed production in later date of sowing could relate to 
facing stressful condition (higher temperature and lack of 
precipitation) during plant growth. The sexual reproduction 
of Polygonum viviparumn in the alpine meadow of the 
Qinghai-Tibet Plateau with increasing temperature 
decreased (Zhang et al., 2021). The effect of water stress on 
seed production of different biotype of Sisymbrium thellungii 
is reported by Mahajan et al. (2018). Cell metabolism, carbon 
accumulation and the appearance of shoots during the 
different phenophases are highly affected by temperature 
(Tanino et al., 2010). The relationship between plant size and 
reproductive output is central to a plant strategy to convert 
growth into fitness (Weiner et al., 2009). In P. viviparumn, 
more utilizable resources were allocated to vegetative 
growth under warming condition (Zhang et al., 2021). 
Based on our study, we can hypothesise that variation in 
reproductive fitness of F. convolvulus will be more regulated 
by the reproductive period and the prevalent temperature 
during this phenophasas. 
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Conclusion
The phenology information of F. convolvulus is a useful 

indicator and has practical applications in response to 
climate change and conserving biodiversity. 

Following the comparative study of the different time 
of sowing, some differences were observed in terms of 
growth stages and development, productive ability, and 
succession of phenophases that can help the growers to 
reach sustainable strategies for managing of given species. 

F. convolvulus can mostly emerge throughout February 
to April in North of Iran. As the dominant paradigm of 
weed management in Iran is currently founded on the two 
principal tools of herbicides and tillage to remove weeds, 
this information is essential to identify accurate time.

The result will be toward revealing different options to 
manage of this plant at the agroecosystem level that, rather 
than aiming to eradicate weeds, act to regulate populations 
to limit their negative impacts while conserving diversity, for 
example seed destructors.

Furthermore, understanding the secondary dormancy 
of F. convolvulus needs to be detailed. And the findings 
reported here can be used in decision support systems and 
for research of the plant population dynamics. 
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Supplementary data
Seed germination response of F. convolvulus to temperature 

According to germination test of F. convolvulus at different temperatures, the lowest final percentage of germination 
was obtained at high temperatures 35 and 40 °C and the highest final percentage of germination was observed in the 
20 and 25 °C. No germination was observed at 45 °C. Although, the time (hours) to reach 50% germination decreased with 
increasing temperature from 5 °C and reached its minimum at 35 °C. The lowest T50 was observed at highest temperature 
which is coordinate with the phenology response and development rate of each phenophases of F. convolvulus.

Figure S1. Cumulative germination percentages of F. 
convolvulus seeds at different temperatures.

Table S1. Parameters estimated by the three-parameter 
logistic function fitted to the germination time-course data 
against temperature for F. convolvulus.
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